FoxO1 is not a key transcription factor in the regulation of myostatin (mstn-1a and mstn-1b) gene expression in trout myotubes.
نویسندگان
چکیده
In mammals, much evidence has demonstrated the important role of myostatin (MSTN) in regulating muscle mass and identified the transcription factor forkhead box O (FoxO) 1 as a key regulator of its gene expression during atrophy. However, in trout, food deprivation leads to muscle atrophy without an increase of the expression of mstn genes in the muscle. We therefore studied the relationship between FoxO1 activity and the expression of both mstn genes (mstn1a and mstn1b) in primary culture of trout myotubes. To this aim, two complementary studies were undertaken. In the former, FoxO1 protein activity was modified with insulin-like growth factor-I (IGF-I) treatment, and the consequences on the expression of both mstn genes were monitored. In the second experiment, the expression of both studied genes was modified with growth hormone (GH) treatment, and the activation of FoxO1 protein was investigated. We found that IGF-I induced the phosphorylation of FoxO1 and FoxO4. Moreover, under IGF-I stimulation, FoxO1 was no longer localized in the nucleus, indicating that this growth factor inhibited FoxO1 activity. However, IGF-I treatment had no effect on mstn1a and mstn1b expression, suggesting that FoxO1 would not regulate the expression of mstn genes in trout myotubes. Furthermore, the treatment of myotubes with GH decreased the expression of both mstn genes but has no effect on the phosphorylation of FoxO1, FoxO3, and FoxO4 nor on the nuclear translocation of FoxO1. Altogether, our results showed that mstn1a and mstn1b expressions were not associated with FoxO activity, indicating that FoxO1 is likely not a key regulator of mstn genes in trout myotubes.
منابع مشابه
Myostatin stimulates myosatellite cell differentiation in a novel model system: evidence for gene subfunctionalization.
Myosatellite cells play an important role in mammalian muscle regeneration as they differentiate and fuse with mature fibers. In fish, they also contribute to postnatal growth and the formation of new fibers. The relative conservation of fish systems, however, is not well known nor are the underlying mechanisms that control myosatellite cell differentiation. We therefore characterized this proc...
متن کاملThe Combined Effect of High-Intensity Interval Training and Metformin on Gene Expression of Myogenin and Myostatin in Skeletal Muscle of Type 2 Diabetic Mice
Background: Myogenin (MyoG) and Myostatin (Mstn) play role in muscle growth and wasting, respectively. The present study aimed to investigate the combined effect of High-intensity Interval Training (HIIT) and Metformin drug (Metf) on gene expression of MyoG and Mstn in skeletal muscle of type 2 diabetic mice. Methods: 25 mice (C57BL/6) were assigned to two groups, including 1) Control © (n=5),...
متن کاملIdentification, characterization, and quantitative expression analysis of rainbow trout myostatin-1a and myostatin-1b genes.
Myostatin is a potent negative regulator of skeletal muscle growth. Although several cDNA clones have been characterized in different vertebrates, the genomic organization and bioactivity of non-mammalian homologs have not. The intron/exon organization and promoter subsequence analysis of two rainbow trout myostatin genes, rtMSTN-1a and rtMSTN-1b (formerly 1 and 2 respectively), as well as a qu...
متن کاملThe Expression of Myogenin and Myostatin Genes in Baluchi Sheep
Myogenin gene (MYoG) affects the synthesis of muscle myofibrillar growth and increase of meat production. The myostatin (MSTN) gene is identified as a specific negative regulator of skeletal muscle growth. Reduction of the expression level of MSTN throughmutation in the sequence of this gene leads to an increase of myogenesis and regeneration of muscle cells during the postnatal growing period ...
متن کاملL-leucine, beta-hydroxy-beta-methylbutyric acid (HMB) and creatine monohydrate prevent myostatin-induced Akirin-1/Mighty mRNA down-regulation and myotube atrophy
BACKGROUND The purpose of this study was to examine if L-leucine (Leu), β-hydroxy-β-methylbutyrate (HMB), or creatine monohydrate (Crea) prevented potential atrophic effects of myostatin (MSTN) on differentiated C2C12 myotubes. METHODS After four days of differentiation, myotubes were treated with MSTN (10 ng/ml) for two additional days and four treatment groups were studied: 1) 3x per day 10...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 301 1 شماره
صفحات -
تاریخ انتشار 2011